Navier-Stokes limit of globally hyperbolic moment equations
نویسندگان
چکیده
This paper is concerned with the Navier-Stokes limit of a class globally hyperbolic moment equations from Boltzmann equation. we show that can be formally derived for various different collision mechanisms. Furthermore, formal justified rigorously by using an energy method. It should noted are in non-conservative form and do not have convex entropy function, therefore some additional efforts required justification. style='text-indent:20px;'> style='text-indent:20px;'>Erratum: The month information has been corrected January to February. We apologize any inconvenience this may cause.
منابع مشابه
Global solutions to hyperbolic Navier-Stokes equations
We consider a hyperbolicly perturbed Navier-Stokes initial value problem in R, n = 2, 3, arising from using a Cattaneo type relation instead of a Fourier type one in the constitutive equations. The resulting system is a hyperbolic one with quasilinear nonlinearities. The global existence of smooth solutions for small data is proved, and relations to the classical Navier-Stokes systems are discu...
متن کاملCompressible Navier-Stokes equations with hyperbolic heat conduction
In this paper, we investigate the system of compressible Navier-Stokes equations with hyperbolic heat conduction, i.e., replacing the Fourier’s law by Cattaneo’s law. First, by using Kawashima’s condition on general hyperbolic parabolic systems, we show that for small relaxation time τ , global smooth solution exists for small initial data. Moreover, as τ goes to zero, we obtain the uniform con...
متن کاملEuler and Navier-Stokes equations on the hyperbolic plane.
We show that nonuniqueness of the Leray-Hopf solutions of the Navier-Stokes equation on the hyperbolic plane (2) observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on (n) whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperboli...
متن کاملLow Mach number limit of the full Navier-Stokes equations,
The low Mach number limit for classical solutions of the full Navier-Stokes equations is here studied. The combined effects of large temperature variations and thermal conduction are taken into account. In particular, we consider general initial data. The equations lead to a singular problem whose linearized is not uniformly well-posed. Yet, it is proved that the solutions exist and are uniform...
متن کاملInviscid Limit of Stochastic Damped 2d Navier-stokes Equations
We consider the inviscid limit of the stochastic damped 2D NavierStokes equations. We prove that, when the viscosity vanishes, the stationary solution of the stochastic damped Navier-Stokes equations converges to a stationary solution of the stochastic damped Euler equation and that the rate of dissipation of enstrophy converges to zero. In particular, this limit obeys an enstrophy balance. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kinetic and Related Models
سال: 2021
ISSN: ['1937-5077', '1937-5093']
DOI: https://doi.org/10.3934/krm.2021001